满分5 > 高中数学试题 >

设A,B分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线. ...

设A,B分别为椭圆manfen5.com 满分网的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)
(Ⅰ)根据题意可求得a和c的关系,进而根据准线方程求得a和c,则b可得,进而求得椭圆的方程. (Ⅱ)根据(Ⅰ)中的椭圆方程可求得A,B的坐标,设出点M的坐标,代入椭圆方程,由P、A、M三点共线可以求得点P的坐标,进而表示出•根据2-x>0判断出•>0,进而可知∠MBP为锐角,从而∠MBN为钝角,判断出点B在以MN为直径的圆内. 【解析】 (Ⅰ)依题意得a=2c,=4, 解得a=2,c=1,从而b=. 故椭圆的方程为. (Ⅱ)由(Ⅰ)得A(-2,0),B(2,0). 设M(x,y). ∵M点在椭圆上, ∴y2=(4-x2)(1) 又点M异于顶点A、B, ∴-2<x<2,由P、A、M三点共线可以得 P(4,). 从而=(x-2,y),=(2,). ∴•=2x-4+=(x2-4+3y2).(2) 将(1)代入(2),化简得•=(2-x). ∵2-x>0, ∴•>0,则∠MBP为锐角,从而∠MBN为钝角, 故点B在以MN为直径的圆内.
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明.

manfen5.com 满分网 查看答案
已知直线l:y=kx,圆C:x2+y2-2x-2y+1=0,直线l交圆于P、Q两点,点M(0,b)满足MP⊥MQ.
(I)当b=1时,求k的值;
(II)若k>3时,求b的取值范围.
查看答案
甲、乙两人各抛掷一个六个面分别标有数字1,2,3,4,5,6的正方体骰子各一次,那么
(I)共有多少种不同的结果?
(II)设甲、乙所抛掷骰子朝上的面的点数x、y分别为一个点的横纵坐标M(x,y),请列出满足x>y的所有结果;
(III)在(II)的条件下,求满足x>y的概率.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求tanA的值;
(Ⅱ)求函数manfen5.com 满分网的值域.
查看答案
如图,PT切圆O于点T,PA交圆O于A、B两点,且与直径CT交于点D,CD=2,AD=3,BD=6,则PB=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.