满分5 > 高中数学试题 >

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列...

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设manfen5.com 满分网,Tn是数列{bn}的前n项和,求使得manfen5.com 满分网对所有n∈N*都成立的最小正整数m;
(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),根据导函数求得f(x)的表达式,再根据点(n,Sn)(n∈N*)均在函数 y=f(x)的图象上,求出an的递推关系式, (Ⅱ)把(1)题中an的递推关系式代入bn,根据裂项相消法求得Tn,最后解得使得对所有n∈N*都成立的最小正整数m. 【解析】 (Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b,由于f′(x)=6x-2,得 a=3,b=-2,所以f(x)=3x2-2x. 又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上, 所以Sn=3n2-2n. 当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5. 当n=1时,a1=S1=3×12-2=6×1-5, 所以,an=6n-5(n∈N*) (Ⅱ)由(Ⅰ)得知==, 故Tn===(1-). 因此,要使(1-)<(n∈N*)成立的m,必须且仅须满足≤,即m≥10, 所以满足要求的最小正整数m为10.
复制答案
考点分析:
相关试题推荐
设A,B分别为椭圆manfen5.com 满分网的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)
查看答案
如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明.

manfen5.com 满分网 查看答案
已知直线l:y=kx,圆C:x2+y2-2x-2y+1=0,直线l交圆于P、Q两点,点M(0,b)满足MP⊥MQ.
(I)当b=1时,求k的值;
(II)若k>3时,求b的取值范围.
查看答案
甲、乙两人各抛掷一个六个面分别标有数字1,2,3,4,5,6的正方体骰子各一次,那么
(I)共有多少种不同的结果?
(II)设甲、乙所抛掷骰子朝上的面的点数x、y分别为一个点的横纵坐标M(x,y),请列出满足x>y的所有结果;
(III)在(II)的条件下,求满足x>y的概率.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求tanA的值;
(Ⅱ)求函数manfen5.com 满分网的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.