满分5 > 高中数学试题 >

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相...

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(Ⅰ)求证:∠P=∠EDF;
(Ⅱ)求证:CE•EB=EF•EP.

manfen5.com 满分网
(1)根据所给的乘积式和对应角相等,得到两个三角形相似,由相似得到对应角相等,再根据两直线平行内错角相等,角进行等量代换,得到要证的结论. (2)根据第一问所得的结果和对顶角相等,得到两个三角形相似,根据三角形相似得到对应线段成比例,把比例式转化为乘积式,再根据相交弦定理得到比例式,等量代换得到结果. 证明:(1)∵DE2=EF•EC, ∴DE:CE=EF:ED. ∵∠DEF是公共角, ∴△DEF∽△CED. ∴∠EDF=∠C. ∵CD∥AP, ∴∠C=∠P. ∴∠P=∠EDF. (2)∵∠P=∠EDF,∠DEF=∠PEA, ∴△DEF∽△PEA. ∴DE:PE=EF:EA. 即EF•EP=DE•EA. ∵弦AD、BC相交于点E, ∴DE•EA=CE•EB. ∴CE•EB=EF•EP.
复制答案
考点分析:
相关试题推荐
设函数f(x)=ax+lnx,g(x)=a2x2
(1)当a=-1时,求函数y=f(x)图象上的点到直线x-y+3=0距离的最小值;
(2)是否存在正实数a,使得不等式f(x)≤g(x)对一切正实数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案
设椭圆manfen5.com 满分网的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且manfen5.com 满分网
(Ⅰ)试求椭圆的方程;
(Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值.

manfen5.com 满分网 查看答案
(理科)某中学号召学生在2010年春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(I)求合唱团学生参加活动的人均次数;
(II)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率.

(文科)先后抛掷一枚骰子两次,得到点数m,n,确定函数f(x)=x2+mx+n2,设函数f(x)有零点为事件A.
(I)求事件A的概率P(A);
(II)设函数g(x)=x2+12P(A)x-4的定义域为[-5,5],记“当x∈[-5,5]时,则g(x)≥0”为事件B,求事件B的概率P(B).

manfen5.com 满分网 查看答案
如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积;
(3)求证:CE⊥AF.

manfen5.com 满分网 查看答案
如图,A是单位圆与x轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),manfen5.com 满分网,四边形OAQP的面积为S.
(1)求manfen5.com 满分网的最大值及此时θ的值θ
(2)设点B的坐标为manfen5.com 满分网,∠AOB=α,在(1)的条件下求cos(α+θ).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.