满分5 > 高中数学试题 >

如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,...

如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连接MC,MB,OT.
(Ⅰ)求证:DT•DM=DO•DC;
(Ⅱ)若∠DOT=60°,试求∠BMC的大小.

manfen5.com 满分网
(1)由切割线定理可得DT•DM=DB•DA,结合题中中点条件利用半径作为中间量进行代换,即可得证; (2)结合(1)的结论证得△DTO∽△DCM,得到两个角∠DOT、∠DMC相等,结合圆周角定理即可求得∠BMC. 证明:(1)因MD与圆O相交于点T, 由切割线定理DN2=DT•DM,DN2=DB•DA, 得DT•DM=DB•DA,设半径OB=r(r>0), 因BD=OB,且BC=OC=, 则DB•DA=r•3r=3r2,, 所以DT•DM=DO•DC. (2)由(1)可知,DT•DM=DO•DC, 且∠TDO=∠CDM, 故△DTO∽△DCM,所以∠DOT=∠DMC; 根据圆周角定理得,∠DOT=2∠DMB,则∠BMC=30°.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lnx+manfen5.com 满分网,其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∝]内调递增,求a的取值范围;
(2)求函数f(x)在区间[1,e]上的最小值;
(3)对于函数g(x)=(p-x)e-x+1,若存在x∈[1,e],使不等式g(x)≥lnx成立,求实数p的取值范围.
查看答案
如图,已知椭圆manfen5.com 满分网的长轴为AB,过点B的直线l与x轴垂直.直线(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率manfen5.com 满分网
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.试判断直线QN与以AB为直径的圆O的位置关系.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且平面DA1C⊥平面AA1C1C.
(Ⅰ)求证:D点为棱BB1的中点;
(Ⅱ)判断四棱锥A1-B1C1CD和C-A1ABD的体积是否相等,并证明.
查看答案
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.
(Ⅰ)求取出的两个球上标号为相邻整数的概率;
(Ⅱ)求取出的两个球上标号之和能被3整除的概率.
查看答案
在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=manfen5.com 满分网,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.