满分5 > 高中数学试题 >

已知H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足...

已知H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足manfen5.com 满分网
(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过点T(-1,0)作直线l与轨迹C交于A、B两点,若在x轴上存在一点E(x,0),使得△ABE是等边三角形,求x的值.
(1)设出M的坐标,利用题意向量的关系,求得x和y的关系,进而求得M的轨迹C. (2)设直线l的方程,代入抛物线方程,设出A,B的坐标,利用韦达定理表示出x1+x2和x1x2,则线段AB中点坐标以及AB的中垂线的方程可得,把y=0代入方程,最后利用△ABE为正三角形,利用正三角的性质推断E到直线AB的距离的关系式求得k,则x可求. 解(1)设点M的坐标为(x,y), 由.得, 由,得, 所以y2=4x由点Q在x轴的正半轴上,得x>0, 所以,动点M的轨迹C是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点. (2)设直线l:y=k(x+1),其中k≠0代入y2=4x,得k2x2+2(k2-2)x+k2=0① 设A(x1,y1),B(x2,y2),则x1,x2是方程①的两个实数根,由韦达定理得 所以,线段AB的中点坐标为,线段AB的垂直平分线方程为, 令,所以,点E的坐标为. 因为△ABE为正三角形,所以,点E到直线AB的距离等于|AB|,而|AB|=. 所以,解得,所以.
复制答案
考点分析:
相关试题推荐
设函数f(x)=(1+x)2-2ln(1+x).
(1)若在定义域内存在x,而使得不等式f(x)-m≤0能成立,求实数m的最小值;
(2)若函数g(x)=f(x)-x2-x-a在区间(0,2]上恰有两个不同的零点,求实数a的取值范围.
查看答案
在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若manfen5.com 满分网
(1)求证:x与y的关系为manfen5.com 满分网
(2)设manfen5.com 满分网,定义函数manfen5.com 满分网,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为manfen5.com 满分网的等比数列,O为原点,令manfen5.com 满分网,是否存在点Q(1,m),使得manfen5.com 满分网?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程manfen5.com 满分网在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.
查看答案
已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:manfen5.com 满分网为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中manfen5.com 满分网是境外游客,其余是境内游客.在境外游客中有manfen5.com 满分网持金卡,在境内游客中有manfen5.com 满分网持银卡.
(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(II)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案
设数列{an}中,若an+1=an+an+2,(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出该6项之和;
(2)在“凸数列”{an}中,求证:an+6=an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.