某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶.假设该小船沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
考点分析:
相关试题推荐
已知函数f(x)=cos(
+x)cos(
-x),g(x)=
sin2x-
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案
已知函数f(x)=
sin2x-2sin
2x.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)求函数f(x)的零点的集合.
查看答案
已知函数f(x)=
sin2xsinφ+cos
2xcosφ-
sin(
+φ)(0<φ<π),其图象过点(
,
).
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的
,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,
]上的最大值和最小值.
查看答案
已经函数
(Ⅰ)函数f(x)的图象可由函数g(x)的图象经过怎样变化得出?
(Ⅱ)求函数h(x)=f(x)-g(x)的最小值,并求使用h(x)取得最小值的x的集合.
查看答案
(Ⅰ)①证明两角和的余弦公式C
α+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由C
α+β推导两角和的正弦公式S
α+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知
,求cos(α+β).
查看答案