满分5 > 高中数学试题 >

某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度...

manfen5.com 满分网某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.
(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α-β最大?
(1)在Rt△ABE中可得AD=,在Rt△ADE中可得AB=,BD=,再根据AD-AB=DB即可得到H. (2)先用d分别表示出tanα和tanβ,再根据两角和公式,求得tan(α-β)=,再根据均值不等式可知当d===55时,tan(α-β)有最大值即α-β有最大值,得到答案. 【解析】 (1)=tanβ⇒AD=,同理:AB=,BD=. AD-AB=DB,故得-=, 得:H===124. 因此,算出的电视塔的高度H是124m. (2)由题设知d=AB,得tanα=,tanβ===, tan(α-β)==== d+≥2,(当且仅当d===55时,取等号) 故当d=55时,tan(α-β)最大. 因为0<β<α<,则0<α-β<,所以当d=55时,α-β最大. 故所求的d是55m.
复制答案
考点分析:
相关试题推荐
设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且manfen5.com 满分网
(Ⅰ)求角A的值;
(Ⅱ)若manfen5.com 满分网,求b,c(其中b<c).
查看答案
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶.假设该小船沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
查看答案
已知函数f(x)=cos(manfen5.com 满分网+x)cos(manfen5.com 满分网-x),g(x)=manfen5.com 满分网sin2x-manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案
已知函数f(x)=manfen5.com 满分网sin2x-2sin2x.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)求函数f(x)的零点的集合.
查看答案
已知函数f(x)=manfen5.com 满分网sin2xsinφ+cos2xcosφ-manfen5.com 满分网sin(manfen5.com 满分网+φ)(0<φ<π),其图象过点(manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的manfen5.com 满分网,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.