满分5 > 高中数学试题 >

为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位...

为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
是否需要志愿       性别
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:manfen5.com 满分网
P(k2>k)0.00.0100.001
k3.8416.63510.828

(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值. (2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关. (3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好. 【解析】 (1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助, ∴该地区老年人中需要帮助的老年人的比例的估算值为. (2)根据列联表所给的数据,代入随机变量的观测值公式, . ∵9.967>6.635, ∴有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.
复制答案
考点分析:
相关试题推荐
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点
(1)证明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

manfen5.com 满分网 查看答案
设数列满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列的前n项和Sn
查看答案
在△ABC中,D为边BC上一点,BD=manfen5.com 满分网DC,∠ADB=120°,AD=2,若△ADC的面积为manfen5.com 满分网,则∠BAC=    查看答案
过点A(4,1)的圆C与直线x-y=1相切于点B(2,1),则圆C的方程为    查看答案
正视图为一个三角形的几何体可以是    (写出三种) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.