满分5 > 高中数学试题 >

已知函数f(x)=x3+ax2+bx(a,b∈R).若函数f(x)在x=1处有极...

已知函数f(x)=x3+ax2+bx(a,b∈R).若函数f(x)在x=1处有极值-4.
(1)求f(x)的单调递减区间;
(2)求函数f(x)在[-1,2]上的最大值和最小值.
(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数的单调性,从而求解. (2)由(1)求出函数的单调区间,可以运用导数判断函数的单调性,从而求出函数f(x)在[-1,2]上的最大值和最小值. (1)f′(x)=3x2+2ax+b,依题意有f′(1)=0,f(1)=-4, 即得.(4分) 所以f′(x)=3x2+4x-7=(3x+7)(x-1), 由f′(x)<0,得-<x<1, 所以函数f(x)的单调递减区间(-,1).(7分) (2)由(1)知f(x)=x3+2x2-7x,f′(x)=3x2+4x+7=(3x+7)(x-1), 令f′(x)=0,解得x1=-,x2=1. f′(x),f(x)随x的变化情况如下表: 由上表知,函数f(x)在(-1,1)上单调递减,在(1,2)上单调递增. 故可得f(x)min=f(1)=-4,f(x)max=f(-1)=8.(13分)
复制答案
考点分析:
相关试题推荐
已知在△ABC中,角A,B,C的对边为a,b,c向量manfen5.com 满分网manfen5.com 满分网,且m⊥n.
(I)求角C的大小.
(Ⅱ)若manfen5.com 满分网,求sin(A-B)的值.
查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,且manfen5.com 满分网,则角B的大小为    查看答案
设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为    查看答案
已知manfen5.com 满分网,则函数u(x,y)=x2+y2取最大值时,x=    ,y=    查看答案
已知向量manfen5.com 满分网=(2,3),manfen5.com 满分网=(-1,2),若向量mmanfen5.com 满分网+nmanfen5.com 满分网与向量manfen5.com 满分网-2manfen5.com 满分网共线,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.