围建一个面积为360m
2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.
考点分析:
相关试题推荐
甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案
已知实数x、y满足
则目标函数z=x-2y的最小值是
.
查看答案
若行列式
中,元素4的代数余子式大于0,则x满足的条件是
.
查看答案
(陕西卷理15A)不等式|x+3|-|x-2|≥3的解集为
查看答案
若实数x,y满足不等式组
,则3x+2y的最大值是
.
查看答案