满分5 > 高中数学试题 >

已知f(x)=(x∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a的值组成的...

已知f(x)=manfen5.com 满分网(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=manfen5.com 满分网的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(Ⅰ)函数单调递增导数大于等于零列出不等式解之 (Ⅱ)根据一元二次方程根与系数的关系写出不等式先看成关于a的不等式恒成立再看成关于t的一次不等式恒成立,让两端点大等于零 【解析】 (Ⅰ)f'(x)==, ∵f(x)在[-1,1]上是增函数, ∴f'(x)≥0对x∈[-1,1]恒成立, 即x2-ax-2≤0对x∈[-1,1]恒成立.① 设φ(x)=x2-ax-2, 方法一:φ ①⇔⇔-1≤a≤1, ∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0 ∴A={a|-1≤a≤1}.方法二: ①⇔或 ⇔0≤a≤1或-1≤a≤0 ⇔-1≤a≤1. ∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0 ∴A={a|-1≤a≤1}. (Ⅱ)由,得x2-ax-2=0,∵△=a2+8>0 ∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2, 从而|x1-x2|==. ∵-1≤a≤1,∴|x1-x2|=≤3. 要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立, 当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立, 即m2+tm-2≥0对任意t∈[-1,1]恒成立.② 设g(t)=m2+tm-2=mt+(m2-2), 方法一: ②⇔g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0, ⇔m≥2或m≤-2. 所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}. 方法二: 当m=0时,②显然不成立; 当m≠0时, ②⇔m>0,g(-1)=m2-m-2≥0或m<0,g(1)=m2+m-2≥0 ⇔m≥2或m≤-2. 所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.
查看答案
甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案
已知实数x、y满足manfen5.com 满分网则目标函数z=x-2y的最小值是    查看答案
若行列式manfen5.com 满分网中,元素4的代数余子式大于0,则x满足的条件是    查看答案
(陕西卷理15A)不等式|x+3|-|x-2|≥3的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.