定义在非零实数集上的奇函数f(x)在(-∞,0)上是减函数,且f(-3)=0.
(1)求f(3)的值;
(2)求满足f(x)>0的x的集合.
考点分析:
相关试题推荐
某港口水的深度y(单位:m)是时间t(单位:h)的函数,记作y=f(t),如表是某日的水深数据:
t/h | | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/m | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
经长期观察,y=f(t)的曲线可以近似地看成函数y=Asinωt+b的图象.
(1)试根据以上数据,求出y=f(t)的近似表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5m或5m以上被记为是安全的(船舶停靠时只需不碰海底即可),某船吃水深度(船底离水面的距离)为6.5m,如果该船希望在同一天内安全进出港口,则它至多能在港内停留多少时间?(忽略进出港所需时间)
查看答案
设函数f(x)=
•
,其中向量
=(2cosx,1),
=(cosx,
sin2x),x∈R.
(1)若f(x)=1-
,且x∈[-
,
],求x;
(2)若函数y=2sin2x的图象按向量
=(m,n),(|m|<
)平移后得到函数y=f(x)的图象,求实数m、n的值.
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),
.
(1)若
,求角α的值;
(2)若
,求
的值.
查看答案
(1)利用“五点法”画出函数
在长度为一个周期的闭区间的简图.
(2)并说明该函数图象可由y=sinx(x∈R)的图象经过怎样平移和伸缩变换得到的.
查看答案
2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是
,则sin
2θ-cos
2θ的值等于
.
查看答案