(1)由题意知,解这个方程求出a1,d,能够得到an.
(2)由an=log2bn得到,,所以.
(3)Gn=3•23+5•25+…+(2n+1)•22n+1,4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+3)•22n+3,两式相减得:-3Gn=3•23+(2•25+2•27+2•22n+1)-(2n+1)•22n+3,由此能导出Gn.
【解析】
(1)由题意得,解得
∴an=2n+1(5分)
(2)由an=log2bn得到,
∴,∴数列{bn}是等比数列,其中b1=8,q=4,
∴.(10分)
(3)Gn=3•23+5•25+…+(2n+1)•22n+1
∴4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+3)•22n+3
两式相减得:-3Gn=3•23+(2•25+2•27+2•22n+1)-(2n+1)•22n+3
即:-3Gn=24+(26+28+22n+2)-(2n+1)•22n+3
=
=
∴.(15分)