满分5 > 高中数学试题 >

f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a= .

f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=   
这类不等式在某个区间上恒成立的问题,可转化为求函数最值的问题,本题要分三类:①x=0,②x>0,③x<0等三种情形,当x=0时,不论a取何值,f(x)≥0都成立;当x>0时有a≥,可构造函数g(x)=,然后利用导数求g(x)的最大值,只需要使a≥g(x)max,同理可得x<0时的a的范围,从而可得a的值. 【解析】 若x=0,则不论a取何值,f(x)≥0都成立; 当x>0即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为:a≥ 设g(x)=,则g′(x)=, 所以g(x)在区间(0,]上单调递增,在区间[,1]上单调递减, 因此g(x)max=g()=4,从而a≥4; 当x<0即x∈[-1,0)时,f(x)=ax3-3x+1≥0可化为:a≤, g(x)=在区间[-1,0)上单调递增, 因此g(x)min=g(-1)=4,从而a≤4,综上a=4. 答案为:4
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3-3a2x+a(a>0)的极大值为正数,极小值为负数,则a的取值范围是    查看答案
若函数f(x)=manfen5.com 满分网在x=1处取极值,则a=    查看答案
已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
查看答案
方程x3-6x2+9x-4=0的实根的个数为( )
A.0
B.1
C.2
D.3
查看答案
已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是( )
A.(-1,0)
B.(2,+∞)
C.(0,1)
D.(-∞,-3)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.