满分5 > 高中数学试题 >

已知函数f(x)=(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最...

已知函数f(x)=manfen5.com 满分网(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2.
(1)求f(x)的解析式;
(2)若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围.
(1)先对函数f(x)进行求导判断其单调性后可知f(-1)=-a,f(1)=2-a,再根据函数在区间[-1,1]上的最大值为1,最小值为-2可得答案. (2)先写出函数g(x)的解析式,然后求导数,令导函数在区间[-2,2]小于等于0恒成立即可得到答案. 【解析】 (1)f′(x)=3x2-3ax, 令f′(x)=0,得x1=0,x2=a, ∵a>1, ∴f(x)在[-1,0]上为增函数,在[0,1]上为减函数. ∴f(0)=b=1, ∵f(-1)=-a,f(1)=2-a, ∴f(-1)<f(1), ∴f(-1)=-a=-2,a=. ∴f(x)=x3-2x2+1. (2)g(x)=x3-2x2-mx+1,g′(x)=3x2-4x-m. 由g(x)在[-2,2]上为减函数,知g′(x)≤0在x∈[-2,2]上恒成立. ∴,即 ∴m≥20. ∴实数m的取值范围是m≥20.
复制答案
考点分析:
相关试题推荐
f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=    查看答案
已知函数f(x)=x3-3a2x+a(a>0)的极大值为正数,极小值为负数,则a的取值范围是    查看答案
若函数f(x)=manfen5.com 满分网在x=1处取极值,则a=    查看答案
已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0
查看答案
方程x3-6x2+9x-4=0的实根的个数为( )
A.0
B.1
C.2
D.3
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.