满分5 > 高中数学试题 >

已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,A、B为过F1的直线与椭...

已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,A、B为过F1的直线与椭圆的交点,且△F2AB的周长为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)判断manfen5.com 满分网是否为定值,若是求出这个值,若不是说明理由.
(Ⅰ)由题意知,c=1,,由此可知椭圆方程为. (Ⅱ)设A(x1,y1),B(x2,y2)当直线斜率不存在时,有x1=x2=-1,,,;直线斜率存在时,设直线方程为y=k(x+1)代入椭圆方程,并整理得:(2+3k2)x2+6k2x+3k2-6=0,然后由根与系数的关系能够导出的值. 【解析】 (Ⅰ)由椭圆定义可知,,c=1 所以 所以椭圆方程为(5分) (Ⅱ)设A(x1,y1),B(x2,y2) (1)当直线斜率不存在时,有x1=x2=-1(2),(3),(4)(6分) (2)当直线斜率存在时,设直线方程为y=k(x+1)代入椭圆方程,并整理得:(2+3k2)x2+6k2x+3k2-6=0(7分) 所以(或求出x1,x2的值) 所以==(12分) 所以(13分)
复制答案
考点分析:
相关试题推荐
已知x∈[0,1],函数manfen5.com 满分网,g(x)=x3-3a2x-4a.
(Ⅰ)求函数f(x)的单调区间和值域;
(Ⅱ)设a≤-1,若∀x1∈[0,1],总存在,使得g(x)=f(x1)成立,求a的取值范围.
查看答案
manfen5.com 满分网从参加高三年级期中考试的学生中随机抽出40名学生,将其数学成绩(均为整数)分成六组[40,50),[50,60),…[90,100]后得到如下频率分布直方图.
(Ⅰ)同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅱ)从上述40名学生中随机抽取2人,求这2人成绩都在[70,80)的概率;
(Ⅲ)从上述40名学生中随机抽取2人,抽到的学生成绩在[40,60),记为0分,在[60,100],记为1分.用X表示抽取结束后的总记分,求X的分布列和数学期望.
查看答案
如图:PD⊥平面ABCD,四边形ABCD为直角梯形,AB∥CD,∠ADC=90°,PD=CD=2AD=2AB=2,EC=2PE.
(Ⅰ)求证:PA∥平面BDE;
(Ⅱ)求证:平面BDP⊥平面PBC;
(Ⅲ)求二面角B-PC-D的余弦值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为manfen5.com 满分网,∠AOC=α.
(Ⅰ)求圆O的半径及C点的坐标;
(Ⅱ)若|BC|=1,求manfen5.com 满分网的值.
查看答案
用g(n)表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,g(9)=9,10的因数有1,2,5,10,g(10)=5,那么g(1)+g(2)+g(3)+…+g(15)=    ;g(1)+g(2)+g(3)+…+g(2n-1)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.