满分5 > 高中数学试题 >

已知函数f(x)=x2+alnx. (Ⅰ)当a=-2时,求函数f(x)的单调区间...

已知函数f(x)=x2+alnx.
(Ⅰ)当a=-2时,求函数f(x)的单调区间和极值;
(Ⅱ)若函数manfen5.com 满分网在[1,+∞)上是增函数,不等式manfen5.com 满分网在[1,+∞)上恒成立,求实数a的取值范围.
(I)先求出函数的定义域,把a代入到函数中并求出f′(x)=0时x的值,在定义域内讨论导函数的正负得到函数的单调区间及极值; (Ⅱ)把f(x)代入到g(x)中得到g(x)的解析式,求出其导函数大于0即函数单调,可设φ(x)=-2x2,求出其导函数在[1,+∞)上单调递减,求出φ(x)的最大值,列出不等数求出解集即为a的取值范围. 【解析】 (I)函数f(x)的定义域为(0,+∞) 当a=-2时, 当x变化时,f′(x),f(x)的变化情况如下: 由上表可知,函数f(x)的单调递减区间是(0,1); 单调递增区间是(1,+∞). 极小值是f(1)=1; (Ⅱ)由 又函数上单调增函数, 则g′(x)≥0在[1,+∞)上恒成立, 即不等式上恒成立 也即在[1,+∞)上恒成立 又在[1,+∞)为减函数, 所以φ(x)max=φ(1)=0. 所以a≥0.a的取值范围为[0,+∞).
复制答案
考点分析:
相关试题推荐
设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,求实数a的值.
查看答案
若函数manfen5.com 满分网在(1,+∞)上是增函数,则实数k的取值范围是    查看答案
已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:
①f(x2)-f(x1)>x2-x1
②x2f(x1)>x1f(x2);
manfen5.com 满分网<f (manfen5.com 满分网).
其中正确结论的序号是    (把所有正确结论的序号都填上).
manfen5.com 满分网 查看答案
如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,那么实数a的取值范围是    查看答案
已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.(-2,3)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.