满分5 > 高中数学试题 >

过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB...

过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.
(1)试证明A,B两点的纵坐标之积为定值;
(2)若点N是定直线l:x=-m上的任意一点,分别记直线AN,MN,BN的斜率为k1、k2、k3
试求k1、k2、k3之间的关系,并给出证明.

manfen5.com 满分网
(1)设A(x1,y1),B(x2,y2),设直线AB的方程为:x=ty+m与y2=2px联立得y2=2px,x=ty+m,消去x得y2-2pty-2pm=0,再由韦达定理得y1•y2为定值; (2)三条直线AN,MN,BN的斜率成等差数列,证明如下:设点N(-m,n),则直线AN的斜率为;直线BN的斜率为,由此能够推导出kAN+kBN=2kMN,即直线AN,MN,BN的斜率成等差数列. 【解析】 (1)证明:.设A(x1,y1),B(x2,y2)有y1•y2=-2pm,下证之: 设直线AB的方程为:x=ty+m与y2=2px联立得y2=2px x=ty+m,消去x得y2-2pty-2pm=0(4分) 由韦达定理得y1•y2=-2pm,(6分) (2)【解析】 三条直线AN,MN,BN的斜率成等差数列,(9分) 下证之: 设点N(-m,n),则直线AN的斜率为; 直线BN的斜率为 ∴ = = =(13分) 又∵直线MN的斜率为(14分) ∴kAN+kBN=2kMN,即直线AN,MN,BN的斜率成等差数列. (15分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(Ⅰ)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值;
(Ⅲ)当a>0时,求函数f(x)的零点个数.
查看答案
设数列{an}的前n项和为Sn,点P(Sn,an)在直线(2-m)x+2my-m-2=0上,其中m为常数,且m>0.
(Ⅰ)求证:{an}是等比数列,并求其通项an
(Ⅱ)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=f(bn-1),(n∈N+,n≥2),求证:manfen5.com 满分网是等差数列,并求bn
(Ⅲ)设数列{cn}满足cn=bnbn+1,Tn为数列{cn}的前n项和,且存在实数T满足Tn≥T,(n∈N+)求T的最大值.
查看答案
如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,manfen5.com 满分网
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,当manfen5.com 满分网为何值时,能使DM⊥MC?请给出证明.

manfen5.com 满分网 查看答案
已知复数z1=cosα+isinα,z2=cosβ+isinβ,manfen5.com 满分网
求:(1)求cos(α-β)的值;
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sinα的值.
查看答案
定义在(0,+∞)上函数f(x)满足f(x)+f(y)=f(xy),且当x>1时,f(x)<0,若不等式manfen5.com 满分网对任意x,y∈(0,+∞)恒成立,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.