满分5 > 高中数学试题 >

设点P(x,y)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2-y2...

设点P(x,y)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2-y2=1的两条切线PA、PB,切点为A、B,定点manfen5.com 满分网
(1)求证:三点A、M、B共线.
(2)过点A作直线x-y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.
(1)先根据题意设A(x1,y1),B(x2,y2),将切线PA的方程代入双曲线的方程,消去y得到关于x的一元二次方程,再结合根的判别式等于0即可表示出切线的斜率,因此PA的方程和PB的方程都可以利用A,B两点的坐标表示,又P在PA、PB上,得到点A(x1,y1),B(x2,y2)都在直线yy=mx-1上,从而证得三点A、M、B共线,从而解决问题. (2)设重心G(x,y),欲求△AMN的重心G所在曲线方程,即求出其坐标x,y的关系式,利用点A在双曲线上即可得重心G所在曲线方程. 证明:(1)设A(x1,y1),B(x2,y2), 由已知得到y1y2≠0,且x12-y12=1,x22-y22=1, 设切线PA的方程为:y-y1=k(x-x1)由 得(1-k2)x2-2k(y1-kx1)x-(y1-kx1)2-1=0 从而△=4k2(y1-kx1)2+4(1-k2)(y1-kx1)2+4(1-k2)=0, 解得 因此PA的方程为:y1y=x1x-1 同理PB的方程为:y2y=x2x-1 又P(m,y)在PA、PB上,所以y1y=mx1-1,y2y=mx2-1 即点A(x1,y1),B(x2,y2)都在直线yy=mx-1上 又也在直线yy=mx-1上,所以三点A、M、B共线 (2)垂线AN的方程为:y-y1=-x+x1, 由得垂足, 设重心G(x,y) 所以 解得 由x12-y12=1可得即为重心G所在曲线方程
复制答案
考点分析:
相关试题推荐
如图,正三棱锥O-ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知manfen5.com 满分网
(1)求证:B1C1⊥平面OAH;
(2)求二面角O-A1B1-C1的大小.

manfen5.com 满分网 查看答案
数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且a1=3,b1=1,数列manfen5.com 满分网是公比为64的等比数列,b2S2=64.
(1)求an,bn
(2)求证manfen5.com 满分网
查看答案
某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.
(1).写出ξ1、ξ2的分布列;
(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?
查看答案
在△ABC中,角A,B,C所对应的边分别为a,b,c,manfen5.com 满分网manfen5.com 满分网,2sinBcosC=sinA,求A,B及b,c.
查看答案
如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,
容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))
有下列四个命题:
A.正四棱锥的高等于正四棱柱高的一半
B.将容器侧面水平放置时,水面也恰好过点P
C.任意摆放该容器,当水面静止时,水面都恰好经过点P
D.若往容器内再注入a升水,则容器恰好能装满.
其中真命题的代号是:    (写出所有真命题的代号).
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.