满分5 > 高中数学试题 >

cos330°=( ) A. B. C. D.

cos330°=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由cos(α+2kπ)=cosα、cos(-α)=cosα解之即可. 【解析】 cos330°=cos(360°-30°)=cos(-30°)=cos30°=, 故选C.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线l交抛物线于A,B两点,抛物线在A、B两点处的切线交于点M.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)设直线MF交该抛物线于C,D两点,求四边形ACBD面积的最小值.
查看答案
已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn
查看答案
已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(Ⅰ)若f(x)在R上单调,求a的取值范围;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的极小值.
查看答案
在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖.
(Ⅰ)求仅一次摸球中奖的概率;
(Ⅱ)记连续3次摸球中奖的次数为ξ,求ξ的分布列.
查看答案
在正四棱柱ABCD-A1B1C1D1中,E,F分别是C1D1,C1B1的中点,G为CC1上任一点,EC与底面ABCD所成角的正切值是4.
(Ⅰ)求证AG⊥EF;
(Ⅱ)确定点G的位置,使AG⊥面CEF,并说明理由;
(Ⅲ)求二面角F-CE-C1的余弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.