满分5 > 高中数学试题 >

如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,...

如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
manfen5.com 满分网
(Ⅰ)证明:AD⊥平面PBC;
(Ⅱ)求三棱锥D-ABC的体积;
(Ⅲ)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
(Ⅰ)证明AD垂直平面PBC内的两条相交直线PC、BC,即可证明AD⊥平面PBC; (Ⅱ)求出三棱锥的底面ABC的面积,求出高BC,再求三棱锥D-ABC的体积; (Ⅲ)取AB的中点O,连接CO并延长至Q,使得CQ=2CO,点Q即为所求,证明PQ平行平面ABD内的直线OD,即可证明PQ∥平面ABD,在直角△PAQ中,求此时PQ的长. 【解析】 (Ⅰ)因为PA⊥平面ABC,所以PA⊥BC, 又AC⊥BC,所以BC⊥平面PAC,(2分) 所以BC⊥AD.(3分) 由三视图可得,在△PAC中,PA=AC=4,D为PC中点,所以AD⊥PC,(4分) 所以AD⊥平面PBC,(5分) (Ⅱ)由三视图可得BC=4, 由(Ⅰ)知∠ADC=90°,BC⊥平面PAC, 又三棱锥D-ABC的体积即为三棱锥B-ADC的体积,(7分) 所以,所求三棱锥的体积.(9分) (Ⅲ)取AB的中点O,连接CO并延长至Q,使得CQ=2CO,点Q即为所求.(10分) 因为O为CQ中点,所以PQ∥OD, 因为PQ⊄平面ABD,OD⊂平面ABD, 所以PQ∥平面ABD,(12分) 连接AQ,BQ,四边形ACBQ的对角线互相平分, 所以ACBQ为平行四边形, 所以AQ=4,又PA⊥平面ABC, 所以在直角△PAQ中,.(14分)
复制答案
考点分析:
相关试题推荐
已知α为锐角,且manfen5.com 满分网
(Ⅰ)求tanα的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
查看答案
设函数f(x)的定义域为D.若存在非零实数l使得对于任意x∈M.有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数,如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数.求实数m的取值范围. 查看答案
在△ABC中,C为钝角,manfen5.com 满分网manfen5.com 满分网,则角C=    °,sinB=    查看答案
已知manfen5.com 满分网若f(x)=2,则x=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.