满分5 > 高中数学试题 >

设斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△O...

设斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线的方程为   
先表示出抛物线的焦点坐标,进而可求出|0F|的值且能够得到直线l的方程,进而得到其在y轴的截距,然后表示出△OAF的面积可得到a的值,最后得到答案. 【解析】 焦点坐标(,0),|0F|=, 直线的点斜式方程 y=2(x-) 在y轴的截距是- S△OAF=××=4 ∴a2=64,∵a>0∴a=8,∴y2=8x 故答案为:y2=8x
复制答案
考点分析:
相关试题推荐
定义在R上的函数f(x)满足manfen5.com 满分网,若f(3)=log2m,则m=    查看答案
如果函数y=3cos(2x+φ)的图象关于点manfen5.com 满分网中心对称,那么|φ|的最小值为     查看答案
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生1号2号3号4号5号
甲班67787
乙班67679
则以上两组数据的方差中较小的一个为s2=    查看答案
长方形ABCD中,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为    查看答案
设x,y满足manfen5.com 满分网,则z=x+y的最小值为    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.