满分5 > 高中数学试题 >

设F1、F2分别是椭圆的左、右焦点. (Ⅰ)若P是第一象限内该椭圆上的一点,且,...

设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且manfen5.com 满分网,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.
(Ⅰ)求出椭圆的a,b,c,P是第一象限内该椭圆上的一点设为(x,y),利用,以及P在椭圆上,求点P的作标; (Ⅱ)设过定点M(0,2)的直线l方程为y=kx+2,A(x1,y1),B(x2,y2),与椭圆联立,注意到交于不同的两点A、B,△>0且∠AOB为锐角(其中O为作标原点),就是利用韦达定理,代入化简,求直线l的斜率k的取值范围. 【解析】 (Ⅰ)易知a=2,b=1,. ∴,.设P(x,y)(x>0,y>0). 则,又, 联立,解得,. (Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2). 联立 ∴, 由△=(16k)2-4•(1+4k2)•12>016k2-3(1+4k2)>0,4k2-3>0,得.① 又∠AOB为锐角, ∴ 又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4 ∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4 = = = ∴.② 综①②可知, ∴k的取值范围是.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(x2-3)ex,求f(x)的单调区间和极值.
查看答案
如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,SB与平面ABCD所成的角为45°,且AD=2,SA=1.
(Ⅰ)求证:PD⊥平面SAP;
(Ⅱ)求点A到平面SPD的距离;
(Ⅲ)求二面角A-SD-P的大小.

manfen5.com 满分网 查看答案
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是manfen5.com 满分网,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.
查看答案
(理)已知向量manfen5.com 满分网=(1,1),向量manfen5.com 满分网和向量manfen5.com 满分网的夹角为manfen5.com 满分网,|manfen5.com 满分网|=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=-1.
(1)求向量manfen5.com 满分网
(2)若向量manfen5.com 满分网与向量manfen5.com 满分网=(1,0)的夹角为manfen5.com 满分网,向量manfen5.com 满分网=(cosA,manfen5.com 满分网),其中A、B、C为△ABC的内角a、b、c为三边,b2+ac=a2+c2,求|manfen5.com 满分网+manfen5.com 满分网|的取值范围.
查看答案
已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.