设F
1、F
2分别是椭圆
的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且
,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.
考点分析:
相关试题推荐
已知函数f(x)=(x
2-3)e
x,求f(x)的单调区间和极值.
查看答案
如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,SB与平面ABCD所成的角为45°,且AD=2,SA=1.
(Ⅰ)求证:PD⊥平面SAP;
(Ⅱ)求点A到平面SPD的距离;
(Ⅲ)求二面角A-SD-P的大小.
查看答案
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是
,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.
查看答案
(理)已知向量
=(1,1),向量
和向量
的夹角为
,|
|=
,
•
=-1.
(1)求向量
;
(2)若向量
与向量
=(1,0)的夹角为
,向量
=(cosA,
),其中A、B、C为△ABC的内角a、b、c为三边,b
2+ac=a
2+c
2,求|
+
|的取值范围.
查看答案
已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是
.
查看答案