满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=...

如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=manfen5.com 满分网,点F是PB的中点,点E在边BC上移动.
(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点E在BC边的何处,都有PE⊥AF;
(3)当BE为何值时,PA与平面PDE所成角的大小为45°?

manfen5.com 满分网
(1)当点E为BC的中点时,EF与平面PAC平行.由线面平行的判定定理可以证出结论.用线面平行的判定定理证明时要注意把条件写全. (2) 无论点E在BC边的何处,都有PE⊥AF,可建立空间坐标系设点E(x,1,0),求出两向量PE、AF的坐标,用内积为0证两线垂直. (3)求出用E的坐标表示的平面PDE的法向量,由线面角的向量表示公式建立方程求出E的坐标. 【解析】 (1)当点E为BC的中点时,EF与平面PAC平行. ∵在△PBC中,E、F分别为BC、PB的中点, ∴EF∥PC. 又EF⊄平面PAC,而PC⊂平面PAC, ∴EF∥平面PAC. (2)证明:建立如图所示空间直角坐标系,则 P(0,0,1),B(0,1,0), F(0,,),D(,0,0), 设BE=x(0≤x≤), 则E(x,1,0), ;=(x,1,-1)•(0,,)=0, ∴PE⊥AF. (3)设平面PDE的法向量为m=(p,q,1), 由,得m=(,1-,1). 而=(0,0,1),依题意PA与平面PDE所成角为45°, 所以sin45°=, ∴=, 得BE=x=-或BE=x=+>(舍). 故BE=-时,PA与平面PDE所成角为45°.
复制答案
考点分析:
相关试题推荐
某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为manfen5.com 满分网,乌克兰队赢的概率为manfen5.com 满分网,且每局比赛输赢互不影响.若中国队第n局的得分记为an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行.设随机变量ξ表示此次比赛共进行的局数,求ξ的分布列及数学期望.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)在△ABC中,角A、B、C的分别是a、b、c,若(2a-c)cosB=bcosC,求f(A)的取值范围.
查看答案
已知函数f(x)=ax-b的一个零点为3,则函数g(x)=bx2+3ax的零点是     查看答案
椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,则m=    查看答案
已知随机变量ξ+η=8,若ξ~B(10,0.6),则Dη的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.