满分5 > 高中数学试题 >

本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,...

本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.
B:在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=manfen5.com 满分网,N=manfen5.com 满分网,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.
C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.
D:设a、b是非负实数,求证:manfen5.com 满分网

manfen5.com 满分网
A、连接OD,则OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,再证明OB=BC=OD=OA,即可求解. B、由题设得,根据矩阵的运算法则进行求解. C、在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,由题意将圆和直线先化为一般方程坐标,然后再计算a值. D、利用不等式的性质进行放缩证明,然后再进行讨论求证. 【解析】 A:(方法一)证明:连接OD,则:OD⊥DC, 又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO, ∠DOC=∠DAO+∠ODA=2∠DCO, 所以∠DCO=30°,∠DOC=60°, 所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC. (方法二)证明:连接OD、BD. 因为AB是圆O的直径,所以∠ADB=90°,AB=2OB. 因为DC是圆O的切线,所以∠CDO=90°. 又因为DA=DC,所以∠DAC=∠DCA, 于是△ADB≌△CDO,从而AB=CO. 即2OB=OB+BC,得OB=BC. 故AB=2BC. B满分(10分).由题设得 由,可知A1(0,0)、B1(0,-2)、C1(k,-2). 计算得△ABC面积的面积是1,△A1B1C1的面积是|k|,则由题设知:|k|=2×1=2. 所以k的值为2或-2. C【解析】 ρ2=2ρcosθ,圆ρ=2cosθ的普通方程为:x2+y2=2x,(x-1)2+y2=1, 直线3ρcosθ+4ρsinθ+a=0的普通方程为:3x+4y+a=0, 又圆与直线相切,所以, 解得:a=2,或a=-8. D(方法一)证明: = = 因为实数a、b≥0, 所以上式≥0.即有. (方法二)证明:由a、b是非负实数,作差得 = = 当a≥b时,,从而,得; 当a<b时,,从而,得; 所以.
复制答案
考点分析:
相关试题推荐
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=manfen5.com 满分网,其中b为实数.
(1)求证:函数f(x)具有性质P(b);
(2)求函数f(x)的单调区间.
查看答案
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列manfen5.com 满分网是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为manfen5.com 满分网
查看答案
manfen5.com 满分网在平面直角坐标系xoy中,如图,已知椭圆manfen5.com 满分网的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设manfen5.com 满分网,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
查看答案
manfen5.com 满分网某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.
(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α-β最大?
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.