本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.
B:在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=
,N=
,点A、B、C在矩阵MN对应的变换下得到点分别为A
1、B
1、C
1,△A
1B
1C
1的面积是△ABC面积的2倍,求k的值.
C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.
D:设a、b是非负实数,求证:
.
考点分析:
相关试题推荐
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x
2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=
,其中b为实数.
(1)求证:函数f(x)具有性质P(b);
(2)求函数f(x)的单调区间.
查看答案
设各项均为正数的数列{a
n}的前n项和为S
n,已知2a
2=a
1+a
3,数列
是公差为d的等差数列.
(1)求数列{a
n}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式S
m+S
n>cS
k都成立.求证:c的最大值为
.
查看答案
在平面直角坐标系xoy中,如图,已知椭圆
的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x
1,y
1)、N(x
2,y
2),其中m>0,y
1>0,y
2<0.
(1)设动点P满足PF
2-PB
2=4,求点P的轨迹;
(2)设
,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
查看答案
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.
(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α-β最大?
查看答案
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案