满分5 > 高中数学试题 >

如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C...

manfen5.com 满分网如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(I)求证:AD∥EC;
(II)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可; (II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可. 【解析】 (I)证明:连接AB, ∵AC是⊙O1的切线, ∴∠BAC=∠D, 又∵∠BAC=∠E, ∴∠D=∠E, ∴AD∥EC. (II)∵PA是⊙O1的切线,PD是⊙O1的割线, ∴PA2=PB•PD, ∴62=PB•(PB+9) ∴PB=3, 在⊙O2中由相交弦定理,得PA•PC=BP•PE, ∴PE=4, ∵AD是⊙O2的切线,DE是⊙O2的割线, ∴AD2=DB•DE=9×16, ∴AD=12
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足manfen5.com 满分网
(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.
查看答案
已知函数f(x)=lnx-ax(a∈R).
(1)求f(x)的单调区间;
(2)若a=1,且b≠0,函数manfen5.com 满分网,若对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)=g(x2),求实数b的取值范围.
查看答案
某网站就观众对2010年春晚小品类节目的喜爱程度进行网上调查,其中持各种态度的人数如下表:
喜爱程度喜欢一般不喜欢
人数560240200
(1)现用分层抽样的方法从所有参与网上调查的观众中抽取了一个容量为n的样本,已知从不喜欢小品的观众中抽取的人数为5人,则n的值为多少?
(2)在(1)的条件下,若抽取到的5名不喜欢小品的观众中有2名为女性,现将抽取到的5名不喜欢小品的观众看成一个总体,从中任选两名观众,求至少有一名为女性观众的概率.
查看答案
在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1和DD1的中点.
(1)求证:平面B1FC1∥平面ADE;
(2)试在棱DC上取一点M,使D1M⊥平面ADE;
(3)设正方体的棱长为1,求四面体A1-FEA的体积.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2b-c)cosA-acosC=0,
(Ⅰ)求角A的大小;
(Ⅱ)若manfen5.com 满分网manfen5.com 满分网,试判断△ABC的形状,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.