满分5 > 高中数学试题 >

设x=3是函数f(x)=(x2+ax+b)e3-x(x∈R)的一个极值点. (Ⅰ...

设x=3是函数f(x)=(x2+ax+b)e3-x(x∈R)的一个极值点.
(Ⅰ)求a与b的关系式(用a表示b),并求f(x)的单调区间;
(Ⅱ)设a>0,manfen5.com 满分网.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.
(Ⅰ)求出f′(x),因为x=3是函数f(x)的一个极值点得到f′(3)=0即可得到a与b的关系式;令f′(x)=0,得到函数的极值点,用a的范围分两种情况分别用极值点讨论得到函数的单调区间; (Ⅱ)由(Ⅰ)知,当a>0时,f(x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,得到f(x)在区间[0,4]上的值域,又在区间[0,4]上是增函数,求出的值域,最大减去最小得到关于a的不等式求出解集即可. 【解析】 (Ⅰ)f′(x)=-[x2+(a-2)x+b-a]e3-x, 由f′(3)=0,得-[32+(a-2)3+b-a]e3-3=0,即得b=-3-2a, 则f′(x)=[x2+(a-2)x-3-2a-a]e3-x =-[x2+(a-2)x-3-3a]e3-x=-(x-3)(x+a+1)e3-x. 令f′(x)=0,得x1=3或x2=-a-1, 由于x=3是极值点, 所以x+a+1≠0,那么a≠-4. 当a<-4时,x2>3=x1,则 在区间(-∞,3)上,f′(x)<0,f(x)为减函数; 在区间(3,-a-1)上,f′(x)>0,f(x)为增函数; 在区间(-a-1,+∞)上,f′(x)<0,f(x)为减函数. 当a>-4时,x2<3=x1,则 在区间(-∞,-a-1)上,f′(x)<0,f(x)为减函数; 在区间(-a-1,3)上,f′(x)>0,f(x)为增函数; 在区间(3,+∞)上,f′(x)<0,f(x)为减函数. (Ⅱ)由(Ⅰ)知,当a>0时,f(x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减, 那么f(x)在区间[0,4]上的值域是[min(f(0),f(4)),f(3)], 而f(0)=-(2a+3)e3<0,f(4)=(2a+13)e-1>0,f(3)=a+6, 那么f(x)在区间[0,4]上的值域是[-(2a+3)e3,a+6]. 又在区间[0,4]上是增函数, 且它在区间[0,4]上的值域是[a2+,(a2+)e4], 由于(a2+)-(a+6)=a2-a+=()2≥0, 所以只须仅须(a2+)-(a+6)<1且a>0, 解得0<a<. 故a的取值范围是(0,).
复制答案
考点分析:
相关试题推荐
设A,B分别为椭圆manfen5.com 满分网的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)
查看答案
在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有12名.
(Ⅰ)试问此次参赛学生总数约为多少人?
(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表Φ(x)=P(x<xmanfen5.com 满分网
查看答案
如图,在底面边长为1,侧棱长为2的正四棱柱ABCD-A1B1C1D1中,P是侧棱CC1上的一点,CP=m.
(Ⅰ)试确定m,使直线AP与平面BDD1B1所成角为60°;
(Ⅱ)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q⊥AP,并证明你的结论.

manfen5.com 满分网 查看答案
已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设manfen5.com 满分网,Tn是数列{bn}的前n项和,求使得manfen5.com 满分网对所有n∈N*都成立的最小正整数m;
查看答案
设函数manfen5.com 满分网,其中向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,x∈R.
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)将函数f(x)的图象按向量manfen5.com 满分网平移,使平移后得到的图象关于坐标原点成中心对称,求长度最小的manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.