满分5 > 高中数学试题 >

如图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:|PM|+|PN|...

如图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:|PM|+|PN|=6.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)若manfen5.com 满分网,求点P的坐标.

manfen5.com 满分网
(1)先根据题意求出a,b,c的值,再代入到椭圆方程的标准形式中,可得到答案. (2)先将转化为|PM|•|PN|cosMPN=|PM|•|PN|-2的形式,再由余弦定理得到|MN|2=|PM|2+|PN|2-2|PM|•|PN|cosMPN,二者联立后再由点P在椭圆方程上可得到最后答案. 【解析】 (Ⅰ)由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆. 因此半焦距c=2,长半轴a=3,从而短半轴b=, 所以椭圆的方程为 (Ⅱ)由,得|PM|•|PN|cosMPN=|PM|•|PN|-2.① 因为cosMPN≠1,P不为椭圆长轴顶点,故P、M、N构成三角形. 在△PMN中,|MN|=4,由余弦定理有|MN|2=|PM|2+|PN|2-2|PM|•|PN|cosMPN.② 将①代入②,得42=|PM|2+|PN|2-2(|PM|•|PN|-2). 故点P在以M、N为焦点,实轴长为的双曲线上. 由(Ⅰ)知,点P的坐标又满足, 所以由方程组解得 即P点坐标为或
复制答案
考点分析:
相关试题推荐
设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.
查看答案
如图,在△ABC中,B=90°,AC=manfen5.com 满分网,D、E两点分别在AB、AC上.使manfen5.com 满分网,DE=3.现将△ABC沿DE折成直二角角,求:
(Ⅰ)异面直线AD与BC的距离;
(Ⅱ)二面角A-EC-B的大小(用反三角函数表示).

manfen5.com 满分网 查看答案
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为manfen5.com 满分网,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.
查看答案
设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:
(Ⅰ)manfen5.com 满分网的值;
(Ⅱ)cotB+cot C的值.
查看答案
某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有    种(用数字作答).
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.