满分5 > 高中数学试题 >

已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F...

manfen5.com 满分网已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且manfen5.com 满分网,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.
建立坐标系,按题意写出A,B,C,D四点的坐标,进而根据解出E,F,G三点的坐标 参数表示,求出OF与GE两条直线的方程,两者联立即可求出点P的坐标满足的参数方程,消去参数,得到点P的轨迹方程.由于参数a的取值范围影响曲线的形状故按参数a的范围来对曲线进行分类. 【解析】 根据题设条件,首先求出点P坐标满足的方程, 据此再判断是否存在两定点,使得点P到定点距离的和为定值. 按题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a) 设=k(0≤k≤1), 由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak). 直线OF的方程为:2ax+(2k-1)y=0,① 直线GE的方程为:-a(2k-1)x+y-2a=0. ② 从①,②消去参数k, 得点P(x,y)坐标满足方程2a2x2+y2-2ay=0, 整理得. 当时,点P的轨迹为圆弧,所以不存在符合题意的两点; 当时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长; 当时,点P到椭圆两个焦点的距离之和为定值; 当时,点P到椭圆两个焦点的距离之和为定值2a.
复制答案
考点分析:
相关试题推荐
设x、y∈R,manfen5.com 满分网manfen5.com 满分网为直角坐标平面内x、y轴正方向上的单位向量,manfen5.com 满分网=xmanfen5.com 满分网+(y+2)manfen5.com 满分网manfen5.com 满分网=xmanfen5.com 满分网+(y-2)manfen5.com 满分网,且|manfen5.com 满分网|+|manfen5.com 满分网|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点,设manfen5.com 满分网,是否存在这样的直线l,使得四边形OAPB是矩形?若存在,求出直线l的方程;若不存在,试说明理由.
查看答案
已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=manfen5.com 满分网.求椭圆的方程.
查看答案
直线l过点M(1,1),与椭圆manfen5.com 满分网+manfen5.com 满分网=1相交于A、B两点,若AB的中点为M,试求直线l的方程.
查看答案
椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是manfen5.com 满分网,求这个椭圆方程.
查看答案
如图,设E:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.
求证:△PF1F2的面积S=b2tanθ.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.