满分5 > 高中数学试题 >

过椭圆内一点M(1,1)的弦AB. (1)若点M恰为弦AB的中点,求直线AB的方...

过椭圆manfen5.com 满分网内一点M(1,1)的弦AB.
(1)若点M恰为弦AB的中点,求直线AB的方程;
(2)求过点M的弦的中点的轨迹方程.

manfen5.com 满分网
本题考查的知识点是直线的一般式方程及动点轨迹方程的求法,(1)由于弦AB过点M(1,1),故我们可设出直线AB的点斜式方程,联立直线与圆的方程后,根据韦达定理(根与系数的关系),我们结合点M恰为弦AB的中点,可得到一个关于斜率k的方程,解方程求出k值后,代入整理即可得到直线AB的方程.(2)设AB弦的中点为P,则由A,B,M,P四点共线,易得他们确定直线的斜率相等,由此可构造一个关于x,y的关系式,整理后即可得到过点M的弦的中点的轨迹方程. 【解析】 (1)设直线AB的斜率为k,则AB的方程可设为y-1=k(x-1). 得x2+4(kx+1-k)2=16 得(1+4k2)x2+8k(1-k)x+4(1-k2)-16=0 , . . ∴. (2)设弦AB的中点为P(x,y) ∵A,B,M,P四点共线, ∴kAB=kMP ∴.
复制答案
考点分析:
相关试题推荐
数列{bn}是递增的等比数列,且b1+b3=5,b1b3=4.
(I)求数列{bn}的通项公式;
(II)若an=log2bn+3,且a1+a2+a3+…+am≤42,求m的最大值.
查看答案
manfen5.com 满分网已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=manfen5.com 满分网AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
查看答案
已知向量a=(sin(manfen5.com 满分网+x),manfen5.com 满分网cosx),b=(sinx,cosx),f(x)=a•b.
(1)求f(x)的最小正周期和单调增区间;
(2)如果三角形ABC中,满足f(A)=manfen5.com 满分网,求角A的值.
查看答案
甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才想的数字把乙猜的数字记为b,且a,b∈{0,1,2,3,…9},若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为    查看答案
manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.