满分5 > 高中数学试题 >

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=...

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.
(I)求证:CA1⊥C1P;
(II)若四面体P-AB1C1的体积为manfen5.com 满分网,求二面角C1-PB1-A1的余弦值.

manfen5.com 满分网
(I)欲证CA1⊥C1P,可先证CA1⊥平面AC1B,根据直线与平面垂直的判定定理可知只需证CA1与平面AC1B内两相交直线垂直,而AB⊥CA1,AC1⊥CA1,AC1∩AB=A,满足定理条件; (II)先求出P是AB的中点,然后连接A1P,根据二面角平面角的定义可知∠C1PA1是二面角C1-PB1-A1的平面角,在直角三角形C1PA1中求出此角的余弦值即可. (I)证明:连接AC1,∵侧棱AA1⊥底面ABC,∴AA1⊥AB,又∵AB⊥AC. ∴AB⊥平面A1ACC1.又∵CA1⊂平面A1ACC1,∴AB⊥CA1.(2分) ∵AC=AA1=1,∴四边形A1ACC1为正方形,∴AC1⊥CA1. ∵AC1∩AB=A,∴CA1⊥平面AC1B.(4分) 又C1P⊂平面AC1B,∴CA1⊥C1P. (6分) (II)【解析】 ∵AC⊥AB,AA1⊥AC,且C1A1⊥平面ABB1A,BB1⊥AB, 由,知=, 解得PA=1,P是AB的中点. (8分) 连接A1P,则PB1⊥A1P,∵C1A1⊥平面A1B1BA,∴PB1⊥C1A1,∴PB1⊥C1P, ∴∠C1PA1是二面角的平面角,(10分) 在直角三角形C1PA1中,, ∴,即二面角的余弦值是
复制答案
考点分析:
相关试题推荐
已知△ABC的内角A、B、C所对的边分别为a、b、c,且a=2,manfen5.com 满分网
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面积S=4,求b、c的值.
查看答案
已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:
①若m∥α,则m平行于α内的无数条直线;
②若α∥β,m⊂α,n⊂β,则m∥n;
③若m⊥α,n⊥β,m∥n,则α∥β;
④若α∥β,m⊂α,则m∥β;
⑤若α⊥β,α∩β=m,n经过α内的一点,n⊥m,则n⊥β.
上面命题中,真命题的序号是     (写出所有真命题的序号). 查看答案
若a∈[2,6],b∈[0,4],则关于x的一元二次方程x2-2(a-2)x-b2+16=0没有实数根的概率是     查看答案
函数manfen5.com 满分网的值域是     查看答案
双曲线manfen5.com 满分网的一个焦点到一条渐近线的距离是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.