满分5 > 高中数学试题 >

已知{an}是公比大于1的等比数列,它的前3项和S3=7,且a1+3、3a2、a...

已知{an}是公比大于1的等比数列,它的前3项和S3=7,且a1+3、3a2、a3+4构成等差数列.
(I)求数列{an}的通项公式;
(II)令manfen5.com 满分网,数列{bn}的前n项是Tn,若对于任意正整数n,都有Tn<m(m∈Z)成立,求m的最小值.
(I)由a1+3、3a2、a3+4构成等差数列,得到(a1+3)+(a3+4)=2(3a2),又S3=7,得到前三项之和等于7,两者联立即可求出第2项的值,然后设出等比数列的公比为q,利用等比数列的性质利用第2项表示出首项和第3项,代入S3=7中列出关于q的方程,求出方程的解即可得到q的值,根据q大于1,得到满足题意q的值,然后根据q的值求出等比数列的首项,利用首项和q写出数列{an}的通项公式即可; (II)利用(I)求出的数列{an}的通项公式,求出a2n和a2(n+1),代入中化简后,得到bn的通项公式,根据通项公式列举出数列的各项,抵消化简后得到Tn的通项公式,根据n取正整数得到Tn的最大值,即可得到使Tn<m成立的整数m的最小值. 【解析】 (I)由已知得:,解得a2=2, 设数列{an}的公比为q,由a2=2,可得, 又S3=7,可知2q2-5q+2=0,解得, 由题意得q>1,∴q=2.∴a1=1,故数列{an}的通项为an=2n-1; (II)由于,, ∵, ∴使Tn<m成立的整数m的最小值是3.
复制答案
考点分析:
相关试题推荐
某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(I)求课外兴趣小组中男、女同学的人数;
(II)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学分别去做某项试验,求选出的两名同学中恰有一名女同学的概率;
(III)两名同学的试验结束后,男同学做试验得到的试验数据为68、70、71、72、74,女同学做试验得到的试验数据为69、70、70、72、74,请问哪位同学的试验更稳定?并说明理由.
查看答案
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.
(I)求证:CA1⊥C1P;
(II)若四面体P-AB1C1的体积为manfen5.com 满分网,求二面角C1-PB1-A1的余弦值.

manfen5.com 满分网 查看答案
已知△ABC的内角A、B、C所对的边分别为a、b、c,且a=2,manfen5.com 满分网
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面积S=4,求b、c的值.
查看答案
已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:
①若m∥α,则m平行于α内的无数条直线;
②若α∥β,m⊂α,n⊂β,则m∥n;
③若m⊥α,n⊥β,m∥n,则α∥β;
④若α∥β,m⊂α,则m∥β;
⑤若α⊥β,α∩β=m,n经过α内的一点,n⊥m,则n⊥β.
上面命题中,真命题的序号是     (写出所有真命题的序号). 查看答案
若a∈[2,6],b∈[0,4],则关于x的一元二次方程x2-2(a-2)x-b2+16=0没有实数根的概率是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.