满分5 > 高中数学试题 >

数列an中,a1=-3,an=2an-1+2n+3(n≥2且n∈N*). (1)...

数列an中,a1=-3,an=2an-1+2n+3(n≥2且n∈N*).
(1)求a2,a3的值;
(2)设manfen5.com 满分网,证明{bn }是等差数列;
(3)求数列{an}的前n项和Sn
(1)由数列的递推公式求指定项,令n=2,3代入即可; (2)由an=2an-1+2n+3及,只要验证bn-bn-1是个常数即可; (3)根据(2)证明可以求得bn,进而求得an,从而求得sn. 【解析】 (1)a2=2a1+2+3=1,a3=2a22+23+3=13 (2). ∴数列{bn }是公差为1的等差数列. (3)由(2)得,∴an=(n-1)•2n-3(n∈N*) ∴sn=0×21+1×22+…+(n-1)2n-3n 令Tn=0×21+1×22+…+(n-1)2n 则2Tn=0×22+1×23+…+(n-2)2n+(n-1)2n+1 两式相减得:-Tn=22+23+…+2n-(n-1)•2n+1 ==(2-n)•2n+1-4 ∴Tn=(n-2)•2n+1+4 ∴sn=(n-2)2n+1-3n+4.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.
(I)求函数f(x)的解析式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-3,3]时,f(x)<m恒成立,求实数m的取值范围.
查看答案
已知A、B、C三点的坐标分别为A(manfen5.com 满分网manfen5.com 满分网,B(manfen5.com 满分网manfen5.com 满分网,C(manfen5.com 满分网,0).
(Ⅰ)求向量manfen5.com 满分网和向量manfen5.com 满分网的坐标;
(Ⅱ)设manfen5.com 满分网,求f(x)的最小正周期;
(Ⅲ)求当manfen5.com 满分网manfen5.com 满分网时,f(x)的最大值及最小值.
查看答案
已知首项为x1的数列{xn}满足xn+1=manfen5.com 满分网(a为常数).
(1)若对于任意的x1≠-1,有xn+2=xn对于任意的n∈N*都成立,求a的值;
(2)当a=1时,若x1>0,数列{xn}是递增数列还是递减数列?请说明理由;
(3)当a确定后,数列{xn}由其首项x1确定,当a=2时,通过对数列{xn}的探究,写出“{xn}是有穷数列”的一个真命题(不必证明).说明:对于第3题,将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分.
查看答案
在数列{an}中,a1=0,且对任意k∈N*,a2k-1,a2k,a2k+1成等差数列,其公差为2k.
(Ⅰ)证明a4,a5,a6成等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)记manfen5.com 满分网,证明manfen5.com 满分网
查看答案
在数列{an}中,a1=0,且对任意(k∈N*),a2k-1,a2k,a2k+1成等差数列,其公差为dk
(Ⅰ)若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*);
(Ⅱ)若对任意k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk
(i)设q1≠1.证明manfen5.com 满分网是等差数列;
(ii)若a2=2,证明manfen5.com 满分网(n≥2)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.