①②是直线和圆的位置关系及弦长问题,一般转化为圆心到直线的距离问题,但本题中很容易看出①中直线x-2y=0过圆心,②中直线和圆均过原点;③④为与球有关的组合体问题,结合球的截面性质,球心与截面圆心的连线垂直于截面圆处理.
【解析】
①圆心(-2,-1)在直线x-2y=0上,即直线x-2y=0过圆心,所得弦长为直径4,结论错误;
②∵直线y=kx与圆(x-cosθ)2+(y-sinθ)2=1横过原点,故恒有公共点正确;
③球直径为正方体的对角线长即,故求半径R=,球表面积为s=4πR2=27π,结论错误;
由上图可知,AH=,,∴R=,
∵,∴,∴,结论正确.
故答案为:②④