满分5 > 高中数学试题 >

在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. (Ⅰ...

在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有两件不合格的概率.(精确到0.001)
(1)要求恰有一件不合格的概率,我们根据P=P(A•B•)+P(A••C)+P(•B•C),根据已知条件,算出式中各数据量的值,代入公式即可求解. (2)我们可以根据至少有两件不合格的概率公式P=P(A••)+P(•B•)+P(••C)+P(••),根据已知条件,算出式中各数据量的值,代入公式即可求解.也可以从对立事件出发根据(1)的结论,利用P=1-P(A•B•C)+P(A•B•)+P(A••C)+P(•B•C)进行求解. 【解析】 设三种产品各抽取一件, 抽到合格产品的事件分别为A、B和C. (Ⅰ)P(A)=0.90,P(B)=P(C)=0.95. P=0.10,P=P=0.05. 因为事件A,B,C相互独立, 恰有一件不合格的概率为 P(A•B•)+P(A••C)+P(•B•C) =P(A)•P(B)•P()+P(A)•P()•P(C)+P()•P(B)•P(C) =2×0.90×0.95×0.05+0.10×0.95×0.95=0.176 答:恰有一件不合格的概率为0.176; (Ⅱ)解法一:至少有两件不合格的概率为 P(A••)+P(•B•)+P(••C)+P(••) =0.90×0.052+2×0.10×0.05×0.95+0.10×0.052 =0.012. 答:至少有两件不合格的概率为0.012. 解法二:三件产品都合格的概率为 P(A•B•C)=P(A)•P(B)•P(C) =0.90×0.952 =0.812. 由(Ⅰ)知,恰有一件不合格的概率为0.176, 所以至少有两件不合格的概率为 1-P(A•B•C)+0.176 =1-(0.812+0.176) =0.012. 答:至少有两件不合格的概率为0.012.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足a1=1,an=3n-1+an-1(n≥2).
(Ⅰ)求a2,a3
(Ⅱ)证明manfen5.com 满分网
查看答案
已知抛物线C1:y=x2+2x和C:y=-x2+a,如果直线l同时是C1和C2的切线,称l是C1和C2的公切线,公切线上两个切点之间的线段,称为公切线段.
(Ⅰ)a取什么值时,C1和C2有且仅有一条公切线?写出此公切线的方程;
(Ⅱ)若C1和C2有两条公切线,证明相应的两条公切线段互相平分.
查看答案
manfen5.com 满分网已知正四棱柱ABCD-A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.
(1)证明EF为BD1与CC1的公垂线;
(2)求点D1到面BDE的距离.
查看答案
将3种作物种植在如图块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有     种.(以数字答)
manfen5.com 满分网 查看答案
在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则    .”
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.