满分5 > 高中数学试题 >

已知常数a>0,向量=(0,a),=(1,0),经过原点O以+λ,为方向向量的直...

已知常数a>0,向量manfen5.com 满分网=(0,a),manfen5.com 满分网=(1,0),经过原点O以manfen5.com 满分网manfen5.com 满分网,为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.
根据和,求得+λ和-2λ进而可得直线OP和AP的方程,消去参数λ,得点P(x,y)的坐标满足方程,进而整理可得关于x和y的方程,进而看当时,方程为圆不符合题意;当时和当时,P的轨迹为椭圆符合两定点. 【解析】 ∵i=(1,0),c=(0,a), ∴c+λi=(λ,a),i-2λc=(1,-2λa). 因此,直线OP和AP的方程分别为λy=ax和y-a=(-2λa-a)x. 消去参数λ,得点P(x,y)的坐标满足方程y(y-a)=-2a2x2. 整理得.① 因为a>0,所以得: (i)当时,方程①是圆方程,故不存在合乎题意的定点E和F; (ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点; (iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)是R上的偶函数,其图象关于点manfen5.com 满分网对称,且在区间manfen5.com 满分网上是单调函数,求ϕ和ω的值.
查看答案
在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有两件不合格的概率.(精确到0.001)
查看答案
已知数列{an}满足a1=1,an=3n-1+an-1(n≥2).
(Ⅰ)求a2,a3
(Ⅱ)证明manfen5.com 满分网
查看答案
已知抛物线C1:y=x2+2x和C:y=-x2+a,如果直线l同时是C1和C2的切线,称l是C1和C2的公切线,公切线上两个切点之间的线段,称为公切线段.
(Ⅰ)a取什么值时,C1和C2有且仅有一条公切线?写出此公切线的方程;
(Ⅱ)若C1和C2有两条公切线,证明相应的两条公切线段互相平分.
查看答案
manfen5.com 满分网已知正四棱柱ABCD-A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.
(1)证明EF为BD1与CC1的公垂线;
(2)求点D1到面BDE的距离.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.