先根据Sn和S2n的值判断q≠1,再利用求和公式根据Sn和S2n的值求出qn=81进而推断q>1,断定数列为递增数列,即最大一项是an,进而求出a1和q的关系式代入Sn=80即可求出n.
【解析】
由已知an>0,得q>0,若q=1,则有Sn=na1=80,S2n=2na1=160与S2n=6560矛盾,故q≠1.
∵,由(2)÷(1)得qn=81(3).
∴q>1,此数列为一递增数列,在前n项中,最大一项是an,即an=54.
又an=a1qn-1=qn=54,且qn=81,∴a1=q.即a1=q.
将a1=q代入(1)得q(1-qn)=80(1-q),即q(1-81)=80(1-q),解得q=3.又qn=81,∴n=4.