满分5 > 高中数学试题 >

已知函数+ax-1(a∈R),其中f'(x)是f(x)的导函数. (Ⅰ)若曲线f...

已知函数manfen5.com 满分网+ax-1(a∈R),其中f'(x)是f(x)的导函数.
(Ⅰ)若曲线f(x)在点(1,f(x))处的切线与直线2x-y+1=0平行,求a的值;
(Ⅱ)设g(x)=f'(x)-ax-4,若对一切|a|≤1,都有g(x)<0恒成立,求x的取值范围.
(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率与直线2x-y+1=0的斜率相等,从而求出a的值; (II)先求出函数g(x)的解析式,令φ(a)=(1-x)a+4x2-4,因为对一切|a|≤1,都有g(x)<0恒成立等价于对一切|a|≤1,都有φ(a)<0恒成立,然后建立不等关系,解之即可求出x的取值范围. 【解析】 (Ⅰ)f'(x)=4x2+a, f'(1)=4+a=2, 所以a=-2. (Ⅱ)g(x)=f'(x)-ax-4=4x2-ax+a-4, 令φ(a)=(1-x)a+4x2-4, 因为对一切|a|≤1, 都有g(x)<0恒成立等价于对一切|a|≤1,都有φ(a)<0恒成立. 所以即解得. 则当时,对一切|a|≤1,都有g(x)<0恒成立.
复制答案
考点分析:
相关试题推荐
已知点(n,an)(n∈N*)在函数f(x)=-6x-2的图象上,数列{an}的前n项和为Sn
(Ⅰ)求Sn
(Ⅱ)设cn=an+8n+3,数列{dn}满足d1=c1manfen5.com 满分网(n∈N*).求数列{dn}的通项公式;
(Ⅲ)设g(x)是定义在正整数集上的函数,对于任意的正整数x1、x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,且a≠0),记manfen5.com 满分网,试判断数列{bn}是否为等差数列,并说明理由.
查看答案
甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为manfen5.com 满分网,从乙袋中摸出1个球为红球的概率为P2
(Ⅰ)若m=10,求甲袋中红球的个数;
(Ⅱ)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是manfen5.com 满分网,求P2的值;
(Ⅲ)设P2=manfen5.com 满分网,从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次,求摸出的3个球中恰有2个红球的概率.
查看答案
三棱锥P-ABC中,PC、AC、BC两两垂直,BC=PC=1,AC=2,E、F、G分别是AB、AC、AP的中点.
(Ⅰ)求证:平面GFE∥平面PCB;
(Ⅱ)求GB与平面ABC所成角的正切值;
(Ⅲ)求二面角A-PB-C的大小.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网manfen5.com 满分网).
(Ⅰ)求cosx的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
把形如M=mn(m,n∈N*)的正整数表示成各项都是整数、公差为2的等差数列前m项的和,称作“对M的m项分划”.例如,把9表示成9=32=1+3+5,称作“对9的3项分划”,把64表示成64=43=13+15+17+19,称作“对64的4项分划”.据此,对25的5项分划中最大的数是    ;625的5项分划中第2项是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.