满分5 > 高中数学试题 >

设函数f(x)=kax-a-x(a>0且a≠1,k∈R)是奇函数. (1)求实数...

设函数f(x)=kax-a-x(a>0且a≠1,k∈R)是奇函数.
(1)求实数k的值;
(2)若f(1)=manfen5.com 满分网,且g(x)=a2x+a-2x-2mf(x)在[1,+∝)上的最小值为-2,求实数m的值.
(1)根据f(x)是奇函数,得出f(0)=0,进而求出k的值. (2)先通过f(1)=求出a的值.令t=f(x)=2x-2-x,转换成关于t的二次函数.对称轴为t=m.又因为t=f(x)=2x-2-x≤,就要看g(x)取最小值时t能否取到m. 【解析】 (1)∵f(x)为奇函数, ∴f(0)=0 ∴k-1=0, ∴k=1 (2)∵f(1)=, ∴a-=, 即2a2-3a-2=0 ∴a=2或a=-(舍去) ∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2 令t=f(x)=2x-2-x ∵x≥1 ∴t≥f(1)= ∴g(x)=t2-2mt+2=(t-m)2+2-m2 当m≥时,当t=m时,g(x)min=2-m2=-2 ∴m=2 当m<时,当t=时,g(x)min=-3m=-2 m=>,舍去 ∴m=2
复制答案
考点分析:
相关试题推荐
已知A,B,C是△ABC的三个内角,角A,B,C所对的边分别为a,b,c,a=2,向量manfen5.com 满分网,且manfen5.com 满分网
(1)求角A
(2)若manfen5.com 满分网,求b,c.
查看答案
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4(单位:cm),E为PA的中点.
(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

manfen5.com 满分网 查看答案
已知平面直角坐标系manfen5.com 满分网,圆C是△OAB的外接圆.
(1)求圆C的方程;
(2)若过点(2,6)的直线l被圆C所截得的弦长为manfen5.com 满分网,求直线l的方程.
查看答案
已知函数manfen5.com 满分网,f(a)f(b)f(c)<0实数d是函数f(x)的一个零点.给出下列六个判断:①d<a②d>a③d<b④d>b⑤d<c⑥d>c其中可能成立的个数为    查看答案
若椭圆manfen5.com 满分网上横坐标为manfen5.com 满分网的点到左焦点的距离大于它到右准线的距离,则椭圆离心率e的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.