满分5 > 高中数学试题 >

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如...

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若manfen5.com 满分网,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.
(I)先得出an,再解关于n的不等式,利用正整数的条件得出具体结果; (II)先得出an,再解关于n的不等式,根据{bn}的定义求得bn再求得S2m; (III)根据bm的定义转化关于m的不等式恒成立问题. 【解析】 (Ⅰ)由题意,得, 解,得. ∴成立的所有n中的最小正整数为7,即b3=7. (Ⅱ)由题意,得an=2n-1, 对于正整数m,由an≥m,得. 根据bm的定义可知 当m=2k-1时,bm=k(k∈N*); 当m=2k时,bm=k+1(k∈N*). ∴b1+b2++b2m=(b1+b3++b2m-1)+(b2+b4++b2m)=(1+2+3++m)+[2+3+4++(m+1)]=. (Ⅲ)假设存在p和q满足条件,由不等式pn+q≥m及p>0得. ∵bm=3m+2(m∈N*),根据bm的定义可知,对于任意的正整数m都有, 即-2p-q≤(3p-1)m<-p-q对任意的正整数m都成立. 当3p-1>0(或3p-1<0)时,得(或),这与上述结论矛盾! 当3p-1=0,即时,得, 解得.(经检验符合题意) ∴存在p和q,使得bm=3m+2(m∈N*);p和q的取值范围分别是,.
复制答案
考点分析:
相关试题推荐
四川汶川抗震指挥部决定建造一批简易房(房型为长方体状,房高2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即:钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元.房顶用其它材料建造,每平方米材料费为200元.每套房材料费控制在32000元以内.
(1)设房前面墙的长为x,两侧墙的长为y,所用材料费为p,试用x,y表示p;
(2)简易房面积S的最大值是多少?并求当S最大时,前面墙的长度应设计为多少米?
查看答案
设函数f(x)=kax-a-x(a>0且a≠1,k∈R)是奇函数.
(1)求实数k的值;
(2)若f(1)=manfen5.com 满分网,且g(x)=a2x+a-2x-2mf(x)在[1,+∝)上的最小值为-2,求实数m的值.
查看答案
已知A,B,C是△ABC的三个内角,角A,B,C所对的边分别为a,b,c,a=2,向量manfen5.com 满分网,且manfen5.com 满分网
(1)求角A
(2)若manfen5.com 满分网,求b,c.
查看答案
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4(单位:cm),E为PA的中点.
(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

manfen5.com 满分网 查看答案
已知平面直角坐标系manfen5.com 满分网,圆C是△OAB的外接圆.
(1)求圆C的方程;
(2)若过点(2,6)的直线l被圆C所截得的弦长为manfen5.com 满分网,求直线l的方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.