满分5 > 高中数学试题 >

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点. (...

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.
(1)先设出椭圆C的标准方程,进而根据焦点和椭圆的定义求得c和a,进而求得b,则椭圆的方程可得. (2)先假设直线存在,设出直线方程与椭圆方程联立消去y,进而根据判别式大于0求得t的范围,进而根据直线OA与l的距离求得t,最后验证t不符合题意,则结论可得. 【解析】 (1)依题意,可设椭圆C的方程为(a>0,b>0),且可知左焦点为 F(-2,0),从而有,解得c=2,a=4, 又a2=b2+c2,所以b2=12,故椭圆C的方程为. (2)假设存在符合题意的直线l,其方程为y=x+t, 由得3x2+3tx+t2-12=0, 因为直线l与椭圆有公共点,所以有△=(3t)2-4×3(t2-12)≥0,解得-4≤t≤4, 另一方面,由直线OA与l的距离4=,从而t=±2, 由于±2∉[-4,4],所以符合题意的直线l不存在.
复制答案
考点分析:
相关试题推荐
将甲、乙两颗骰子先后各抛一次,a,b分别表示抛掷甲、乙两颗骰子所出的点数.
(Ⅰ)若点P(a,b)落在不等式组manfen5.com 满分网表示的平面域的事件记为A,求事件A的概率;
(Ⅱ)若点P(a,b)落在x+y=m(m为常数)的直线上,且使此事件的概率最大,求m的值及最大概率.
查看答案
已知定义域为(0,+∞)的函数f(x)满足:
(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)当x∈(1,2]时f(x)=2-x给出结论如下:
①任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k-1).
其中所有正确结论的序号是     查看答案
已知函数manfen5.com 满分网和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同.若manfen5.com 满分网,则f(x)的取值范围是    查看答案
某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于    查看答案
manfen5.com 满分网若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.