函数f(x)=lg(x-2)的定义域是 .
考点分析:
相关试题推荐
本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=
,
,且
,
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为
(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为
,
求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
查看答案
已知函数f(x)=x
3-x,其图象记为曲线C.
(1)求函数f(x)的单调区间;
(2)证明:若对于任意非零实数x
1,曲线C与其在点P
1(x
1,f(x
1))处的切线交于另一点P
2(x
2,f(x
2)),曲线C与其在点P
2(x
2,f(x
2))处的切线交于另一点P
3(x
3,f(x
3)),线段P
1P
2,P
2P
3与曲线C所围成封闭图形的面积分别记为S
1,S
2,则
为定值.
查看答案
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶.假设该小船沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
查看答案
如图,圆柱OO
1内有一个三棱柱ABC-A
1B
1C
1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径.
(1)证明:平面A
1ACC
1⊥平面B
1BCC
1;
(2)设AB=AA
1,在圆柱OO
1内随机选取一点,记该点取自于三棱柱ABC-A1B
1C
1内的概率为P.当点C在圆周上运动时,记平面A
1ACC
1与平面B
1OC所成的角为θ(0°<θ≤90°),当P取最大值时,求cosθ的值.
查看答案
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.
查看答案