满分5 > 高中数学试题 >

设函数,当时,函数f(x)的最大值与最小值的和为. (I)求函数f(x)的最小正...

设函数manfen5.com 满分网manfen5.com 满分网,当manfen5.com 满分网时,函数f(x)的最大值与最小值的和为manfen5.com 满分网
(I)求函数f(x)的最小正周期及单调递减区间;
(II)作出y=f(x)在x∈[0,π]上的图象.(不要求书写作图过程)
(1)逆用正弦和余弦的二倍角公式来降幂,用辅角公式把三角函数整理成Asin(ωx+φ)的形式,得到周期和单调递减区间,最后结果要写成区间的形式. (2)根据所给的变量的范围,得到三角函数的值域,由最大值与最小值的和为,求出字母系数a,在坐标系中用五点法做出函数的图象,坐标系的几个元素不要忽略. 【解析】 (I)∵, ∴T=π, 由, 得k∈z 故函数f(x)的单调递减区间是[]k∈z. (II)∵-≤x, ∴, ∴- 当x∈[-,]时, 原函数的最大值与最小值的和, 解得a=0. ∴,图象如图.
复制答案
考点分析:
相关试题推荐
在△ABC中,A、B、C为三角形的三个内角,且满足条件sin(C-A)=1,manfen5.com 满分网
(Ⅰ)求sinA的值;
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2,manfen5.com 满分网,B=60°.
(I)求c及△ABC的面积S;
(II)求sin(2A+C).
查看答案
已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对∀x1,x2∈R,且x1<x2,f(x1)≠f(x2),试证明∃x∈(x1,x2),使manfen5.com 满分网成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对∀x∈R,f(x-4)=f(2-x),且f(x)≥0;②对∀x∈R,都有manfen5.com 满分网.若存在,求出a,b,c的值,若不存在,请说明理由.
查看答案
已知函数f(x)=x2-2ax+5(a>1).
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.
查看答案
经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格f(t)(元)与时间t(天)的函数关系近似满足manfen5.com 满分网(k为正常数),日销售量g(t)(件)与时间t(天)的函数关系近似满足g(t)=125-|t-25|,且第25天的销售金额为13000元.
(Ⅰ)求k的值;
(Ⅱ)试写出该商品的日销售金额w(t)关于时间t(1≤t≤30,t∈N)的函数关系式;
(Ⅲ)该商品的日销售金额w(t)的最小值是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.