满分5 > 高中数学试题 >

已知函数y=kx与y=x2+2(x≥0)的图象相交于A(x1,y1),B(x2,...

已知函数y=kx与y=x2+2(x≥0)的图象相交于A(x1,y1),B(x2,y2),l1,l2分别是y=x2+2(x≥0)的图象在A,B两点的切线,M,N分别是l1,l2与x轴的交点.
(I)求k的取值范围;
(II)设t为点M的横坐标,当x1<x2时,写出t以x1为自变量的函数式,并求其定义域和值域;
(III)试比较|OM|与|ON|的大小,并说明理由(O是坐标原点).
(I)根据直线与抛物线的右侧相交列出关于k的不等式是解决本题的关键,即方程组有正根.通过解不等式确定出k的取值范围; (II)利用导数的知识和点斜式方程的知识写出直线的方程是解决本小题的关键,令直线方程中的y=0,建立以x1为自变量的函数t,进而写出该函数的定义域和值域; (III)利用类比的思想在第(II)问基础上得出|OM|与|ON|的表达式,通过作差法进行二者大小的比较,得出结论. 【解析】 (I)由方程消y得x2-kx+2=0.① 依题意,该方程有两个正实根, 故解得k>2. (II)由f′(x)=2x,求得切线l1的方程为y=2x1(x-x1)+y1, 由y1=x12+2,并令y=0,得t=,x1,x2是方程①的两实根, 且x1<x2,故x1=,k>2, x1是关于k的减函数,所以x1的取值范围是. t是关于x1的增函数,定义域为,所以值域为(-∞,0). (III)当x1<x2时,由(II)可知|OM|=|t|=-. 类似可得|ON|=.|OM|-|ON|=-. 由①可知x1x2=2. 从而|OM|-|ON|=0. 当x2<x1时,有相同的结果|OM|-|ON|=0. 所以|OM|=|ON|.
复制答案
考点分析:
相关试题推荐
如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0点T(-1,1)在AD边所在直线上.
(I)求AD边所在直线的方程;
(II)求矩形ABCD外接圆的方程;
(III)若动圆P过点N(-2,0),且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.

manfen5.com 满分网 查看答案
某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:
(I)这6位乘客在其不相同的车站下车的概率;
(II)这6位乘客中恰有3人在终点站下车的概率.
查看答案
如图,在Rt△AOB中,manfen5.com 满分网,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角.动点D在斜边AB上.
(I)求证:平面COD⊥平面AOB;
(II)当D为AB的中点时,求异面直线AO与CD所成角的余弦值大小;
(III)求CD与平面AOB所成角最大时的正切值大小.

manfen5.com 满分网 查看答案
数列{an}中,a1=2,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.
(1)求c的值;
(2)求{an}的通项公式.
查看答案
记关于x的不等式manfen5.com 满分网的解集为P,不等式|x-1|≤1的解集为Q.
(I)若a=3,求P;
(II)若Q⊆P,求正数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.