满分5 > 高中数学试题 >

如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三...

如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱manfen5.com 满分网
(I)证明FO∥平面CDE;
(II)设manfen5.com 满分网,证明EO⊥平面CDF.

manfen5.com 满分网
(I)要证明FO∥平面CDE,在平面CDE中:取CD中点M,连接OM.证明FO∥EM即可; (II)证明EO⊥平面CDF,只需证明EO⊥FM,CD⊥EO,即可证明结论. 【解析】 (I)证明:取CD中点M,连接OM. 在矩形ABCD中,,又, 则.连接EM,于是 四边形EFOM为平行四边形. ∴FO∥EM. 又因为FO不在平面CDE,且EM⊂平面CDE, ∴FO∥平面CDE. (II)证明:连接FM.由(I)和已知条件,在等边△CDE中, CM=DM,EM⊥CD且. 因此平行四边形EFOM为菱形,从而EO⊥FM. ∵CD⊥OM,CD⊥EM, ∴CD⊥平面EOM,从而CD⊥EO. 而FM∩CD=M, 所以EO⊥平面CDF.
复制答案
考点分析:
相关试题推荐
甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95.
(1)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答);
(2)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答).
查看答案
已知manfen5.com 满分网,求cos2α和manfen5.com 满分网的值.
查看答案
用数字0、1、2、3、4组成没有重复数字的五位数,则其中数字1、2相邻的偶数有    个(用数字作答). 查看答案
某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=    吨. 查看答案
若半径为1的圆分别与y轴的正半轴和射线manfen5.com 满分网相切,则这个圆的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.