满分5 > 高中数学试题 >

已知椭圆+=1(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与y...

已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆短半轴长为半径的圆与y=x+2相切.
(1)求a与b;
(2)设该椭圆的左、右焦点分别为F1和F2,直线l过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1与点P.求PF1线段垂直平分线与l2的交点M的轨迹方程,并说明曲线类型.
(1)由题意以原点为圆心,椭圆短轴长为半径的圆与y=x+2相切.圆心到直线的距离等于半径,以及离心率解得a与b. (2)求出焦点坐标,设出P求出N,再设M、(x,y),利用垂直关系可求得轨迹方程. 【解析】 (1)e=,∴=, 又b==,∴a=,b=. (2)由(1)知F1,F2分别为(-1,0),(1,0), 由题意可设P(1,t),(t≠0)那么线段PF1中点为N(0,), 设M(x,y)是所求轨迹上的任意点,由=(-x,-y),=(-2,-t) 则, 消t得y2=-4x(x≠0)其轨迹为抛物线除原点的部分.
复制答案
考点分析:
相关试题推荐
已知抛物线C:y=ax2(a为非零常数)的焦点为F,点P为抛物线C上一个动点,过点P且与抛物线C相切的直线记为L.
(1)求F的坐标;
(2)当点P在何处时,点F到直线L的距离最小?
查看答案
在直角坐标系xOy中,点P到两点(0,-manfen5.com 满分网),(0,manfen5.com 满分网)的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)写出C的方程;
(2)若manfen5.com 满分网manfen5.com 满分网,求k的值.
查看答案
双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)的离心率为manfen5.com 满分网,则渐近线方程是    查看答案
椭圆x2+4y2=16的离心率等于    ,与该椭圆有共同焦点,且一条渐近线是x+manfen5.com 满分网y=0的双曲线方程是    查看答案
过点P(-2,-4)的抛物线的标准方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.