满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在...

如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

manfen5.com 满分网
(1)要证明EF∥平面ABC,证明EF∥BC即可; (2)要证明平面A1FD⊥平面BB1C1C,通过证明A1D⊥面BB1C1C即可,利用平面与平面垂直的判定定理证明即可. 证明:(1)因为E,F分别是A1B,A1C的中点, 所以EF∥BC,又EF⊄面ABC,BC⊂面ABC,所以EF∥平面ABC; (2)因为直三棱柱ABC-A1B1C1,所以BB1⊥面A1B1C1,BB1⊥A1D, 又A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥面BB1C1C,又A1D⊂面A1FD,所以平面A1FD⊥平面BB1C1C.
复制答案
考点分析:
相关试题推荐
设向量manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网垂直,求tan(α+β)的值;
(2)求manfen5.com 满分网的最大值;
(3)若tanαtanβ=16,求证:manfen5.com 满分网manfen5.com 满分网
查看答案
设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=    查看答案
如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆manfen5.com 满分网的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为   
manfen5.com 满分网 查看答案
设α和β为不重合的两个平面,给出下列命题:
(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
(2)若α外一条直线l与α内的一条直线平行,则l和α平行;
(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.
上面命题,真命题的序号是    (写出所有真命题的序号) 查看答案
已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.