(I )因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.
(II)根据题意,可以设出过P点的直线l1与l2的点斜式方程,分析可得圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即可以得到一个关于a、b的方程,整理变形可得答案.
【解析】
(Ⅰ)若直线l的斜率不存在,则直线x=4与圆C1不相交,
故直线l的斜率存在,不妨设为k,则直线l的方程为y=k(x-4),
即kx-y-4k=0圆C1圆心(-3,1)到直线的距离,
直线l被圆C1截得的弦长为,则=1,
联立以上两式可得k=0或,
故所求直线l方程为y=0或.
(Ⅱ)依题意直线的方程可设为l1:y-b=2(x-a),l2:,
因为两圆半径相等,且分别被两直线截得的弦长相等,
故圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,
即,
解得:a-3b+21=0或3a+b-7=0.