满分5 > 高中数学试题 >

已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y...

已知函数f(x)=manfen5.com 满分网x3-2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.
(1)设出切线的斜率k,得到k等于f′(x)并把a=1代入到f(x)中求出解析式,根据二次函数求最小值的方法,求出k的最小值,然后把x=1代入到f(x)中求出f(1)的值即可得到切点坐标,根据斜率和切点坐标写出切线方程即可; (2)求出f′(x),要使f(x)为单调递增函数,必须满足f'(x)>0,即对任意的x∈(0,+∞),恒有f′(x)大于0,解出a小于一个关系式,利用基本不等式求出这个关系式的最小值,得到关于a的不等式,求出解集即可得到a的取值范围,在范围中找出满足条件的最大整数即可. 【解析】 (1)设切线的斜率为k,则k=f′(x)=2x2-4x+3=2(x-1)2+1,当x=1时,kmin=1. 把a=1代入到f(x)中得:f(x)=x3-2x2+3x,所以f(1)=-2+3=,即切点坐标为(1,) ∴所求切线的方程为y-=x-1,即3x-3y+2=0. (2)f′(x)=2x2-4ax+3,因为y=f(x)为单调递增函数,则对任意的x∈(0,+∞),恒有f′(x)>0, f′(x)=2x2-4ax+3>0, ∴a<=+,而+≥,当且仅当x=时,等号成立. 所以a<,则所求满足条件的最大整数a值为1.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=manfen5.com 满分网AD.
(1)求证:EF∥平面PAD;
(2)求三棱锥C-PBD的体积.
查看答案
已知关x的一元二次函数f(x)=ax2-bx+1,设集合P={1,2,3}Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数a和b得到数对(a,b).
(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;
(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
已知函数f(x)=sin2x+2sinxcosx+3cos2x,x∈R,求:
(1)函数f(x)的最大值及取得最大值的自变量x的集合;
(2)函数f(x)的单调增区间.
查看答案
如图,AB是圆O的直径,PB,PE分别切圆O于B,C,若∠ACE=40°,则∠P=   
manfen5.com 满分网 查看答案
在极坐标系中,圆ρ=4被直线manfen5.com 满分网分成两部分的面积之比是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.