满分5 > 高中数学试题 >

函数y=x2+b x+c(x∈[0,+∞))是单调函数的充要条件是( ) A.b...

函数y=x2+b x+c(x∈[0,+∞))是单调函数的充要条件是( )
A.b≥0
B.b≤0
C.b>0
D.b<0
先用配方法将函数变形,求出其对称轴,因为函数是单调函数,所以对称轴要在区间的左侧求解. 【解析】 ∵函数y=x2+bx+c在[0,+∞)上为单调函数 ∴x=-≤0,即b≥0. 故选A
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,已知动点P(x,y),PM⊥y轴,垂足为M,点N与点P关于x轴对称,manfen5.com 满分网
(1)求动点P的轨迹W的方程;
(2)若点Q的坐标为(2,0),A、B为W上的两个动点,且满足QA⊥QB,点Q到直线AB的距离为d,求d的最大值.

manfen5.com 满分网 查看答案
已知等比数列{an},Sn是其前n项的和,且a1+a3=5,S4=15.
(I)求数列{an}的通项公式;
(II)设manfen5.com 满分网,求数列{bn}的前n项和Tn
(III)比较(II)中Tnmanfen5.com 满分网(n=1,2,3…)的大小,并说明理由.
查看答案
设函数f(x)=2ax3-(6a+3)x2+12x(a∈R).
(Ⅰ)当a=1时,求函数f(x)的极大值和极小值;
(Ⅱ)若函数f(x)在区间(-∞,1)上是增函数,求实数a的取值范围.
查看答案
如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M为PC的中点.
(1)求证:平面PCB⊥平面MAB;
(2)求点A到平面PBC的距离
(3)求二面角C-PB-A的正切值.

manfen5.com 满分网 查看答案
在某次数学实验中,要求:实验者从装有8个黑球、2个白球的袋中每次随机地摸出一个球,记下颜色后放回.现有甲、乙两名同学,规定:甲摸一次,乙摸两次.求:
(I)甲摸出了白球的概率;
(II)乙恰好摸出了一次白球的概率;
(III)甲乙两人中至少有一个人摸出白球的概率.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.